A Note on Rational Approximation to $(1-x)^{1 / 2}$

A. R. Reddy
The Institute for Advanced Study, Princeton, New Jersey 08540 and Rutgers Universily, New Brunswick, New Jersey 08903
Communicated by Oved Shisha

Received June 6, 1977

According to a well-known result of S. N. Bernstein [1, p. 124] $(1-x)^{1 / 2}$ can be approximated uniformly on $[0,1]$ by polynomials of degree $\leqslant n$ with an error roughly $0.282 / 2\left(2^{1 / 2}\right) n$. On the other hand it is obvious that $(1-x)^{1 / 2}$ cannot be approximated uniformly on $[0,1]$ arbitrarily closely by real polynomials having only nonnegative coefficients. Now it is natural to ask whether one can approximate $(1-x)^{1 / 2}$ on $[0,1]$ arbitrarily closely by rational functions having only real nonnegative coefficients. In this connection we prove here

Theorem 1. For all $n \geqslant 2$,

$$
\left\|(1-x)^{1 / 2}-\frac{1}{\sum_{k=0}^{n}\binom{2 k}{k}\left(\frac{x}{4}\right)^{k}}\right\|_{L_{\infty}[0,1]} \leqslant 4\left(\frac{\log n}{n}\right)^{1 / 2}
$$

Proof. It is well known that

$$
(1-x)^{-1 / 2}=\sum_{k=0}^{\infty}\binom{2 k}{k}\left(\frac{x}{4}\right)^{k} \quad \text { and } \quad k^{1 / 2}\binom{2 k}{k}<4^{k}
$$

Hence, for $0 \leqslant x \leqslant(n-2 \log n) n^{-1}$,

$$
0 \leqslant \frac{1}{\sum_{k=0}^{n}\binom{2 k}{k}\left(\frac{x}{4}\right)^{k}}-(1-x)^{1 / 2} \leqslant \sum_{k=n+1}^{\infty}\binom{2 k}{k}\left(\frac{x}{4}\right)^{k} \leqslant \frac{1}{n^{1 / 2}} \sum_{k=n+1}^{\infty} x^{k} \leqslant \frac{1}{n^{1 / 2}}
$$

The last inequality follows, e.g., by applying $\log (1-t) \leqslant-t$ to $t=2 n^{-1} \log n$. On the other hand, for $x \geqslant(n-2 \log n) / n$,

$$
\begin{aligned}
& 0 \leqslant \frac{1}{\sum_{k=0}^{n}\binom{2 k}{k}\left(\frac{x}{4}\right)^{k}}-(1-x)^{1 / 2} \leqslant \frac{1}{\sum_{k=0}^{n}\binom{2 k}{k}\left(\frac{x}{4}\right)^{k}} \\
& \leqslant \frac{1}{\sum_{k=0}^{n}\binom{2 k}{k}\left(\frac{n-2 \log n}{4 n}\right)^{k}} \leqslant 4\left(\frac{\log n}{n}\right)^{1 / 2} \\
& 31
\end{aligned}
$$

since

$$
\begin{aligned}
\sum_{k=0}^{n}\binom{2 k}{k}\left(\frac{n-2 \log n}{4 n}\right)^{k} & =\left(\frac{n}{2 \log n}\right)^{1 / 2}-\sum_{k=n+1}^{\infty}\binom{2 k}{k}\left(\frac{n-2 \log n}{4 n}\right)^{k} \\
& \geqslant\left(\frac{n}{2 \log n}\right)^{1 / 2}-\frac{1}{n^{1 / 2}} \geqslant \frac{1}{4}\left(\frac{n}{\log n}\right)^{1 / 2}
\end{aligned}
$$

Hence the result.

Theorem 2. For real polynomials $p(x), q(x)$ of degrees at most $n \geqslant 12$, having only nonnegative coefficients,

$$
\left\|(1-x)^{1 / 2}-\frac{p(x)}{q(x)}\right\|_{L_{\infty}[0,1]} \geqslant \frac{1}{4\left(n^{1 / 2}\right)}
$$

Proof. Set

$$
\epsilon=\left\|(1-x)^{1 / 2}-\frac{p(x)}{q(x)}\right\|_{L_{\infty}[0,1]}
$$

Then

$$
\begin{equation*}
\epsilon^{-1} \leqslant\left\|\frac{q(1)}{p(1)}\right\| \tag{1}
\end{equation*}
$$

and on $0 \leqslant x \leqslant(n-1) / n$,

$$
\begin{equation*}
\frac{p(x)}{q(x)} \geqslant(1-x)^{1 / 2}-\epsilon \geqslant \frac{1}{n^{1 / 2}}-\epsilon \tag{2}
\end{equation*}
$$

If $1 / n^{1 / 2}-\epsilon \leqslant 0$, then $\epsilon \geqslant 1 / n^{1 / 2}$. Otherwise

$$
\begin{equation*}
\max _{[0 .(n-1) / n]}\left\|\frac{q(x)}{p(x)}\right\| \leqslant \frac{n^{1 / 2}}{1-\epsilon(n)^{1 / 2}} \tag{3}
\end{equation*}
$$

It is easy to verify that
$\left.|q(1)|=\left|q\left(\frac{n-1}{n} \cdot \frac{n}{n-1}\right)\right| \leqslant\left(\frac{n}{n-1}\right)^{n}\left|q\left(\frac{n-1}{n}\right)\right| \leqslant 3 \right\rvert\, q\left(\frac{n-1}{n}\right)$
and

$$
\begin{equation*}
\left|\frac{q(1)}{p(1)}\right| \leqslant \frac{3|q((n-1) / n)|}{|p((n-1) / n)|} \leqslant \frac{3\left(n^{1 / 2}\right)}{1-\epsilon\left(n^{1 / 2}\right)} . \tag{5}
\end{equation*}
$$

From (1) and (5),

$$
\begin{equation*}
\epsilon \geqslant \frac{1}{4\left(n^{1 / 2}\right)} \tag{6}
\end{equation*}
$$

The desired conclusion follows from (3) and (6).

Reference

1. S. N. Bernstein, "Leçons sur les propriétés extrémales et la meillure approximation des fonctions analytiques d'une variable réle," Gauthier-Villars, Paris, 1926.
